期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:85
Nonlinear stability and D-convergence of Runge-Kutta methods for delay differential equations
Article
Zhang, CJ ; Zhou, SZ
关键词: strong algebraic stability;    GDN-stability;    D-convergence;    DDE;    Runge-Kutta method;   
DOI  :  10.1016/S0377-0427(97)00118-0
来源: Elsevier
PDF
【 摘 要 】

This paper deals with the stability and convergence of Runge-Kutta methods with the Lagrangian interpolation (RKLMs) for nonlinear delay differntial equations (DDEs). Some new concepts, such as strong algebraic stability, GDN-stability and D-convergence, are introduced. We show that strong algebraic stability of a RKM for ODEs implies GDN-stability of the corresponding RKLM for DDEs, and that a strongly algebraically stable and diagonally stable RKM with order p, together with a Lagrangian interpolation of order q, leads a D-convergent RKLM of order min{p, q + 1}.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_S0377-0427(97)00118-0.pdf 693KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次