| JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:233 |
| An iterative method for the symmetric and skew symmetric solutions of a linear matrix equation AXB plus CYD = E | |
| Article | |
| Sheng, Xingping1,2  Chen, Guoliang1  | |
| [1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China | |
| [2] Fuyang Normal Coll, Dept Math, Fuyang 236032, Anhui, Peoples R China | |
| 关键词: Iterative method; Matrix equation; Symmetric solution; Skew symmetric solution; Least norm solution; Optimal approximation solution; | |
| DOI : 10.1016/j.cam.2009.11.052 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In this paper, two efficient iterative methods are presented to solve the symmetric and skew symmetric solutions of a linear matrix equation AXB + CYD = E, respectively, with real pair matrices X and Y. By these two iterative methods, the solvability of the symmetric and skew symmetric solutions for the matrix equation can be determined automatically. When the matrix equation has symmetric and skew symmetric solutions, then, for any initial pair matrices X-0 and Y-0, symmetric and skew symmetric solutions can be obtained within finite iteration steps in the absence of roundoff errors, and the minimum norm of the symmetric and skew symmetric solutions can be obtained by choosing a special kind of initial pair matrices. In addition, the unique optimal approximation pair solution and (X) over cap and (Y) over cap to the given matrices (X) over bar and (Y) over bar in Frobenius norm can be obtained by finding the minimum norm solution of a new matrix equation A (X) over tildeB + C (Y) over tildeD = (E) over tilde, where (E) over tilde = E - A (X) over barB - C (Y) over barD. The given numerical examples demonstrate that the iterative methods are quite efficient. (C) 2009 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_cam_2009_11_052.pdf | 677KB |
PDF