期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:235
A simpler analysis of a hybrid numerical method for time-dependent convection-diffusion problems
Article
Clavero, C.1  Gracia, J. L.1  Stynes, M.2 
[1] Univ Zaragoza, Dept Appl Math, E-50009 Zaragoza, Spain
[2] Natl Univ Ireland, Dept Math, Cork, Ireland
关键词: Convection-diffusion parabolic problem;    Uniform convergence;    Shishkin mesh;    Hybrid finite difference scheme;   
DOI  :  10.1016/j.cam.2011.05.025
来源: Elsevier
PDF
【 摘 要 】

A finite difference method for a time-dependent convection-diffusion problem in one space dimension is constructed using a Shishkin mesh. In two recent papers (Clavero et al. (2005) [2] and Mukherjee and Natesan (2009) [3]), this method has been shown to be convergent, uniformly in the small diffusion parameter, using somewhat elaborate analytical techniques and under a certain mesh restriction. In the present paper, a much simpler argument is used to prove a higher order of convergence (uniformly in the diffusion parameter) than in [2,3] and under a slightly less restrictive condition on the mesh. (c) 2011 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2011_05_025.pdf 235KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次