期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:47
AN ANALYSIS OF NEDELEC METHOD FOR THE SPATIAL DISCRETIZATION OF MAXWELL EQUATIONS
Article
MONK, P
关键词: MAXWELL EQUATIONS;    EDGE FINITE ELEMENTS;    ERROR ESTIMATES;   
DOI  :  10.1016/0377-0427(93)90093-Q
来源: Elsevier
PDF
【 摘 要 】

In 1980 Nedelec developed a family of curl- and divergence-conforming finite elements in R3. He proposed the use of these elements to discretize the time-dependent Maxwell equations, noting that the elements have the advantage that the discrete magnetic displacement can be made exactly divergence-free. In this paper, we shall analyze a slight generalization of Nedelec's scheme and prove essentially optimal-order convergence estimates in a variety of situations. We also demonstrate that the Nedelec method can be superconvergent at certain special points and we relate the method to Yee's finite-difference scheme. A by-product of our analysis will be a convergence proof for Yee's method.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_0377-0427(93)90093-Q.pdf 1496KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:2次