期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:139
Schur flow for orthogonal polynomials on the unit circle and its integrable discretization
Article
Mukaihira, A ; Nakamura, Y
关键词: orthogonal polynomials on the unit circle;    Schur flow;    integrable discretization;    Pade approximation;    Perron-Caratheodory continued fraction;   
DOI  :  10.1016/S0377-0427(01)00388-0
来源: Elsevier
PDF
【 摘 要 】

A one-parameter deformation of the measure of orthogonality for orthogonal polynomials on the unit circle is considered. The corresponding dynamics of the Schur parameters of the orthogonal polynomials is shown to be characterized by the complex semi-discrete modified KdV equation, namely, the Schur flow. A discrete analogue of the Miura transformation is found. An integrable discretization of the Schur flow enables us to compute a Pade approximation of the Caratheodory functions, or equivalently, to compute a Perron-Caratheodory continued fraction in. a polynomial time. (C) 2002 Elsevier Science B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_S0377-0427(01)00388-0.pdf 161KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次