期刊论文详细信息
| JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:325 |
| The adaptive composite trapezoidal rule for Hadamard finite-part integrals on an interval | |
| Article | |
| Liu, Dongjie1  Wu, Jiming2  Zhang, Xiaoping3  | |
| [1] Shanghai Univ, Coll Sci, Dept Math, Shanghai 200444, Peoples R China | |
| [2] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China | |
| [3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China | |
| 关键词: Adaptivity; Trapezoidal rule; Hadamard finite-part integrals; Error estimate; | |
| DOI : 10.1016/j.cam.2017.04.041 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In this article, we discuss an adaptive strategy of implementing trapezoidal rule for evaluating Hadamard finite-part integrals with kernels having different singularity. The purpose is to demonstrate cost savings and fast convergence rates engendered through adaptivity for the computation of finite-part integrals. The error indicators obtained from the a posteriori error estimate are used for mesh refinement. Numerical experiments demonstrate that the a posteriori error estimate is efficient, and there is no reliability-efficient gap. (C) 2017 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_cam_2017_04_041.pdf | 616KB |
PDF