期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:380
Nonparametric estimation in a regression model with additive and multiplicative noise
Article
Chesneau, Christophe1  El Kolei, Salima2  Kou, Junke3  Navarro, Fabien2 
[1] Univ Caen, LMNO, Caen, France
[2] CREST, ENSAI, Paris, France
[3] Guilin Univ Elect Technol, Guilin, Peoples R China
关键词: Nonparametric regression;    Multiplicative regression models;    Nonparametric frontier;    Rates of convergence;    Wavelets;   
DOI  :  10.1016/j.cam.2020.112971
来源: Elsevier
PDF
【 摘 要 】

In this paper, we consider an unknown functional estimation problem in a general nonparametric regression model with the feature of having both multiplicative and additive noise. We propose two new wavelet estimators in this general context. We prove that they achieve fast convergence rates under the mean integrated square error over Besov spaces. The obtained rates have the particularity of being established under weak conditions on the model. A numerical study in a context comparable to stochastic frontier estimation (with the difference that the boundary is not necessarily a production function) supports the theory. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2020_112971.pdf 1177KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次