期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:235 |
Some asymptotics for Sobolev orthogonal polynomials involving Gegenbauer weights | |
Article; Proceedings Paper | |
Bracciali, Cleonice F.1  Castano-Garcia, Laura2  Moreno-Balcazar, Juan J.2  | |
[1] UNESP Univ Estadual Paulista, DCCE, IBILCE, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | |
[2] Univ Almeria, Dpto Estadist & Matemat Aplicada, Almeria 04120, Spain | |
关键词: Sobolev orthogonal polynomials; Asymptotics; Mehler-Heine type formulas; | |
DOI : 10.1016/j.cam.2010.05.028 | |
来源: Elsevier | |
【 摘 要 】
We consider the Sobolev inner product < f.g > = integral(1)(-1) f(x)g(x)(1 - x(2))(alpha-1/2) dx + integral f'(x)g'(x)d psi(x), alpha > -1/2, where d(psi) is a measure involving a Gegenbauer weight and with mass points outside the interval (-1, 1). We study the asymptotic behaviour of the polynomials which are orthogonal with respect to this inner product. We obtain the asymptotics of the largest zeros of these polynomials via a Mehler-Heine type formula. These results are illustrated with some numerical experiments. (C) 2010 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_cam_2010_05_028.pdf | 269KB | download |