JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:235 |
Equations of anisotropic elastodynamics as a symmetric hyperbolic system: Deriving the time-dependent fundamental solution | |
Article; Proceedings Paper | |
Yakhno, V. G.1  Yaslan, H. Cerdik2  | |
[1] Dokuz Eylul Univ, Fac Engn, TR-35160 Izmir, Turkey | |
[2] Dokuz Eylul Univ, Dept Math, TR-35160 Izmir, Turkey | |
关键词: Anisotropic elasticity; Dynamic system; Fundamental solution; Wave simulation; | |
DOI : 10.1016/j.cam.2010.10.048 | |
来源: Elsevier | |
【 摘 要 】
The dynamic system of anisotropic elasticity from three second order partial differential equations is written in the form of the time-dependent first order symmetric hyperbolic system with respect to displacement velocity and stress components. A new method of deriving the time-dependent fundamental solution of the obtained system is suggested in this paper. This method consists of the following. The Fourier transform image of the fundamental solution with respect to a space variable is presented as a power series expansion relative to the Fourier parameters. Then explicit formulae for the coefficients of these power series are derived successively. Using these formulae the computer calculation of fundamental solution components (displacement velocity and stress components arising from pulse point forces) has been made for general anisotropic media (orthorhombic and monoclinic) and the simulation of elastic waves has been obtained. These computational examples confirm the robustness of the suggested method. (C) 2010 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_cam_2010_10_048.pdf | 1375KB | download |