期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:369
Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model
Article
Ding, Feng1,2,3  Xu, Ling3  Meng, Dandan3  Jin, Xue-Bo4  Alsaedi, Ahmed5  Hayat, Tasawar5 
[1] Hubei Univ Technol, Sch Elect & Elect Engn, Wuhan 430068, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
[3] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
[4] Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing 100048, Peoples R China
[5] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
关键词: Parameter estimation;    Gradient search;    Iterative algorithm;    Measurement information;    Bilinear system;    State space system;   
DOI  :  10.1016/j.cam.2019.112575
来源: Elsevier
PDF
【 摘 要 】

For the bilinear system with white noise, the difficulty of identification is that there exists the product term of the state and input in the system. To overcome this difficulty, we derive the input-output representation of a class of special bilinear systems by using the transformation, and present a stochastic gradient (SG) algorithm and a gradient-based iterative algorithm for estimating the parameters of the systems in the case of the known input-output data by means of the auxiliary model. The proposed gradient-based iterative algorithm can generate more accurate parameter estimates than the auxiliary model based SG algorithm. The performance of the proposed algorithms are tested by two numerical examples. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2019_112575.pdf 487KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次