期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:134
Scalar products of the elliptic Felderhof model and elliptic Cauchy formula
Article
Motegi, Kohei1 
[1] Tokyo Univ Marine Sci & Technol, Fac Marine Technol, Koto Ku, Etchujima 2-1-6, Tokyo 1358533, Japan
关键词: Elliptic integrable models;    Partition functions;    Symmetric functions;    Representation theory;   
DOI  :  10.1016/j.geomphys.2018.08.004
来源: Elsevier
PDF
【 摘 要 】

We analyze the scalar products of the elliptic Felderhof model introduced by Foda-Wheeler-Zuparic as an elliptic extension of the trigonometric face-type Felderhof model by Deguchi-Akutsu. We derive the determinant formula for the scalar products by applying the Izergin-Korepin technique developed by Wheeler to investigate the scalar products of integrable lattice models. By combining the determinant formula for the scalar products with the recently-developed Izergin-Korepin technique to analyze the wavefunctions, we derive a Cauchy formula for elliptic Schur functions. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2018_08_004.pdf 1701KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次