期刊论文详细信息
| JOURNAL OF GEOMETRY AND PHYSICS | 卷:145 |
| Dimensional interpolation and the Selberg integral | |
| Article | |
| Golyshev, V1  van Straten, D.2  Zagier, D.3,4  | |
| [1] Inst Informat Transmiss Problems, Algebra & Number Theory Lab, Bolshoi Karetny 19, Moscow 127994, Russia | |
| [2] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9,4OG, D-55128 Mainz, Germany | |
| [3] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany | |
| [4] Abdus Salaam Int Ctr Theoret Phys, Via Miramare, Trieste, Italy | |
| 关键词: Dimensional regularization; Mirror symmetry; Selberg integral; | |
| DOI : 10.1016/j.geomphys.2019.06.006 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We show that a version of dimensional interpolation for the Riemann-Roch-Hirzebruch formalism in the case of a Grassmannian leads to an expression for the Euler characteristic of line bundles in terms of a Selberg integral. We propose a way to interpolate higher Bessel equations, their wedge powers, and monodromies thereof to non-integer orders, and link the result with the dimensional interpolation of the RRH formalism in the spirit of the gamma conjectures. (C) 2019 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_geomphys_2019_06_006.pdf | 328KB |
PDF