期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:145
Dimensional interpolation and the Selberg integral
Article
Golyshev, V1  van Straten, D.2  Zagier, D.3,4 
[1] Inst Informat Transmiss Problems, Algebra & Number Theory Lab, Bolshoi Karetny 19, Moscow 127994, Russia
[2] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9,4OG, D-55128 Mainz, Germany
[3] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[4] Abdus Salaam Int Ctr Theoret Phys, Via Miramare, Trieste, Italy
关键词: Dimensional regularization;    Mirror symmetry;    Selberg integral;   
DOI  :  10.1016/j.geomphys.2019.06.006
来源: Elsevier
PDF
【 摘 要 】

We show that a version of dimensional interpolation for the Riemann-Roch-Hirzebruch formalism in the case of a Grassmannian leads to an expression for the Euler characteristic of line bundles in terms of a Selberg integral. We propose a way to interpolate higher Bessel equations, their wedge powers, and monodromies thereof to non-integer orders, and link the result with the dimensional interpolation of the RRH formalism in the spirit of the gamma conjectures. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2019_06_006.pdf 328KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次