期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:147
Einstein metrics, projective structures and the SU(∞) Toda equation
Article
Dunajski, Maciej1  Waterhouse, Alice1 
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
关键词: Projective structures;    Self-duality;    Integrability;   
DOI  :  10.1016/j.geomphys.2019.103523
来源: Elsevier
PDF
【 摘 要 】

We establish an explicit correspondence between two-dimensional projective structures admitting a projective vector field, and a class of solutions to the SU(infinity) Toda equation. We give several examples of new, explicit solutions of the Toda equation, and construct their mini-twistor spaces. Finally we discuss the projective-to-Einstein correspondence, which gives a neutral signature Einstein metric on a cotangent bundle T*N of any projective structure (N, [del]). We show that there is a canonical Einstein of metric on an Fe-bundle over T*N, with a connection whose curvature is the pull-back of the natural symplectic structure from T*N. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2019_103523.pdf 713KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次