期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:159
A dual formula for the spectral distance in noncommutative geometry
Article
D'Andrea, Francesco1,2  Martinetti, Pierre3,4 
[1] Univ Napoli Federico II, Complesso MSA,Via Cintia, I-80126 Naples, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, Complesso MSA,Via Cintia, I-80126 Naples, Italy
[3] Univ Genova DIMA, Via Dodecaneso 35, I-16146 Genoa, Italy
[4] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 35, I-16146 Genoa, Italy
关键词: Spectral triples;    Connes' distance;    Beckmann's problem;   
DOI  :  10.1016/j.geomphys.2020.103920
来源: Elsevier
PDF
【 摘 要 】

In noncommutative geometry, Connes's spectral distance is an extended metric on the state space of a C*-algebra generalizing Kantorovich's dual formula of the Wasserstein distance of order 1 from optimal transport. It is expressed as a supremum. We present a dual formula - as an infimum - generalizing Beckmann's dual of the dualformulation of the Wasserstein distance. We then discuss some examples with matrix algebras, where such a dual formula may be useful to obtain upper bounds for the distance. (c) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2020_103920.pdf 432KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:1次