期刊论文详细信息
| JOURNAL OF GEOMETRY AND PHYSICS | 卷:159 |
| A dual formula for the spectral distance in noncommutative geometry | |
| Article | |
| D'Andrea, Francesco1,2  Martinetti, Pierre3,4  | |
| [1] Univ Napoli Federico II, Complesso MSA,Via Cintia, I-80126 Naples, Italy | |
| [2] Ist Nazl Fis Nucl, Sez Napoli, Complesso MSA,Via Cintia, I-80126 Naples, Italy | |
| [3] Univ Genova DIMA, Via Dodecaneso 35, I-16146 Genoa, Italy | |
| [4] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 35, I-16146 Genoa, Italy | |
| 关键词: Spectral triples; Connes' distance; Beckmann's problem; | |
| DOI : 10.1016/j.geomphys.2020.103920 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In noncommutative geometry, Connes's spectral distance is an extended metric on the state space of a C*-algebra generalizing Kantorovich's dual formula of the Wasserstein distance of order 1 from optimal transport. It is expressed as a supremum. We present a dual formula - as an infimum - generalizing Beckmann's dual of the dualformulation of the Wasserstein distance. We then discuss some examples with matrix algebras, where such a dual formula may be useful to obtain upper bounds for the distance. (c) 2020 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_geomphys_2020_103920.pdf | 432KB |
PDF