期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:124
Quantum Bianchi identities via DG categories
Article
Beggs, Edwin J.1  Majid, Shahn2 
[1] Swansea Univ, Dept Math, Swansea SA2 8PP, W Glam, Wales
[2] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
关键词: Quantum Riemannian geometry;    Noncommutative geometry;    Chern-Connes pairing;    Bianchi identity;    q-Sphere;    Quantum gravity;   
DOI  :  10.1016/j.geomphys.2017.11.005
来源: Elsevier
PDF
【 摘 要 】

We use DG categories to derive analogues of the Bianchi identities for the curvature of a connection in noncommutative differential geometry. We also revisit the Chern-Connes pairing but following the line of Chern's original derivation. We show that a related DG category of extendable bimodule connections is a monoidal tensor category and in the metric compatible case obtain an analogue of a classical antisymmetry of the Riemann tensor. The monoidal structure implies the existence of a cup product on noncommutative sheaf cohomology. Another application shows that the curvature of a line module reduces to a 2-form on the base algebra. We illustrate the theory on the q-sphere, the permutation group S-3 and the bicrossproduct quantum spacetime [r, t] = lambda r. (C) 2017 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2017_11_005.pdf 493KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次