期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:124
Harmonic maps from super Riemann surfaces
Article
Ostermayr, Dominik1 
[1] Univ Cologne, Math Inst, Weyertal 86-90, D-50937 Cologne, Germany
关键词: Harmonic maps;    Super Riemann surfaces;    Finite type;    Completely integrable systems;   
DOI  :  10.1016/j.geomphys.2017.10.017
来源: Elsevier
PDF
【 摘 要 】

In this paper we study harmonic maps from super Riemann surfaces in complex projective spaces and projective spaces associated with the super skew-field D. In both cases, we develop the theory of Gauss transforms and study the notion of isotropy, in particular its relation to holomorphic differentials on the super Riemann surface. Moreover, we give a definition of finite type harmonic maps for a special class of maps into CPn vertical bar n+1 and thus obtain a classification for certain harmonic super tori. Furthermore, we investigate the equations satisfied by the underlying objects and give an example of a harmonic super torus in DP2 whose underlying map is not harmonic. (C) 2017 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2017_10_017.pdf 682KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次