期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:66
Quasi-periodic solutions to the two-component nonlinear Klein-Gordon equation
Article
Wu, Lihua1  He, Guoliang2  Geng, Xianguo3 
[1] Huaqiao Univ, Dept Math, Quanzhou 362021, Peoples R China
[2] Zhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Peoples R China
[3] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
关键词: Two-component nonlinear Klein-Gordon equation;    Quasi-periodic solutions;    Trigonal curve;   
DOI  :  10.1016/j.geomphys.2012.12.002
来源: Elsevier
PDF
【 摘 要 】

Based on solutions of the stationary zero-curvature equation associated with the 3 x 3 matrix spectral problem, we introduce a trigonal curve related to the two-component nonlinear Klein-Gordon equation. Resorting to the theory of trigonal curves and properties of the three kinds of Abel differentials, we deduce the explicit theta function representations of the Baker-Akhiezer function and two meromorphic functions. The two-component nonlinear Klein-Gordon flows are straightened using the Abel map and the Lagrange interpolation formula under certain conditions. The explicit theta function representations of solutions for the two-component nonlinear Klein-Gordon equation are constructed with the aid of the asymptotic properties and the algebro-geometric characters of the two meromorphic functions. (C) 2012 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2012_12_002.pdf 467KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次