期刊论文详细信息
| JOURNAL OF GEOMETRY AND PHYSICS | 卷:33 |
| Dirac eigenvalues and total scalar curvature | |
| Article | |
| Ammann, B ; Bär, C | |
| 关键词: eigenvalues of the Dirac operator; total scalar curvature; Pinocchio metric; | |
| DOI : 10.1016/S0393-0440(99)00050-9 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
It has recently been conjectured that the eigenvalues lambda of the Dirac operator on a closed Riemannian spin manifold M of dimension n greater than or equal to 3 can be estimated from below by the total scalar curvature: lambda(2) greater than or equal to n <(4(n - 1))over bar> . integral(M)(S) <(vol (M))over bar> . We show by example that such an estimate is impossible. (C) 2000 Elsevier Science B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_S0393-0440(99)00050-9.pdf | 63KB |
PDF