| JOURNAL OF GEOMETRY AND PHYSICS | 卷:58 |
| On the Riemannian geometry of Seiberg-Witten moduli spaces | |
| Article | |
| Becker, Christian | |
| 关键词: Seiberg-Witten theory; Moduli spaces; Gauge theory; L-2 metrics; | |
| DOI : 10.1016/j.geomphys.2008.05.005 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We construct a natural L-2-metric on the perturbed Seiberg-Witten moduli spaces m(mu)+ of a compact 4-manifold M, and we study the resulting Riemannian geometry of m(mu)+. We derive a formula which expresses the sectional curvature of m(mu)+ in terms of the Green operators of the deformation complex of the Seiberg-Witten equations. In case M is simply connected, we construct a Riemannian metric on the Seiberg-Witten principal U(1) bundle n -> m(mu)+ such that the bundle projection becomes a Riemannian submersion. On a Kahler surface M, the L-2-metric on m(mu)+ coincides with the natural Kahler metric on moduli spaces of vortices. (C) 2008 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_geomphys_2008_05_005.pdf | 494KB |
PDF