期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:58
On the Riemannian geometry of Seiberg-Witten moduli spaces
Article
Becker, Christian
关键词: Seiberg-Witten theory;    Moduli spaces;    Gauge theory;    L-2 metrics;   
DOI  :  10.1016/j.geomphys.2008.05.005
来源: Elsevier
PDF
【 摘 要 】

We construct a natural L-2-metric on the perturbed Seiberg-Witten moduli spaces m(mu)+ of a compact 4-manifold M, and we study the resulting Riemannian geometry of m(mu)+. We derive a formula which expresses the sectional curvature of m(mu)+ in terms of the Green operators of the deformation complex of the Seiberg-Witten equations. In case M is simply connected, we construct a Riemannian metric on the Seiberg-Witten principal U(1) bundle n -> m(mu)+ such that the bundle projection becomes a Riemannian submersion. On a Kahler surface M, the L-2-metric on m(mu)+ coincides with the natural Kahler metric on moduli spaces of vortices. (C) 2008 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2008_05_005.pdf 494KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:2次