期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:56
The first conformal Dirac eigenvalue on 2-dimensional tori
Article
Ammann, B ; Humbert, E
关键词: spin structure;    eigenvalue;    Dirac operator;    2-dimensional tori;   
DOI  :  10.1016/j.geomphys.2005.04.007
来源: Elsevier
PDF
【 摘 要 】

Let M be a compact manifold with a spin structure chi and a Riemannian metric g. Let lambda(2)(g) be the smallest eigenvalue of the square of the Dirac operator with respect to g and chi. The tau-invariant is defined as tau(M, chi) := sup inf root lambda(2)(g)Vol (M, g)(1/n) where the supremum runs over the set of all conformal classes on M, and where the infimum runs over all metrics in the given class. e show that tau(T-2, chi) = 2 root pi if chi is the non-trivial spin structure on T-2. In order to calculate this invariant, we study the infimum as a function on the spin-conformal moduli space and we show that the infimum converges to 2 root pi at one end of the spin-conformal moduli space. (c) 2005 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2005_04_007.pdf 249KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次