期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:144
Kirwan surjectivity for the equivariant Dolbeault cohomology
Article
Lin, Yi1 
[1] Georgia Southern Univ, Dept Math Sci, Statesboro, GA 30460 USA
关键词: Kahler quotient;    Moment maps;    Cartan-Chern-Weil theory;   
DOI  :  10.1016/j.geomphys.2019.05.005
来源: Elsevier
PDF
【 摘 要 】

Consider the holomorphic Hamiltonian action of a compact Lie group K on a compact Kahler manifold M with a moment map Phi : M -> k*. Assume that 0 is a regular value of the moment map. Weitsman raised the question of what we can say about the cohomology of the Kahler quotient M-0 := Phi(-1)(0)/K if all the ordinary cohomology of M is of type (p, p). In this paper, using the Cartan-Chern-Weil theory we show that in the above context there is a natural surjective Kirwan map from an equivariant version of the Dolbeault cohomology of M onto the Dolbeault cohomology of the Kahler quotient M-0. As an immediate consequence, this result provides an answer to the question posed by Weitsman. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2019_05_005.pdf 410KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次