期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:165
An analytic application of Geometric Invariant Theory
Article
Buchdahl, Nicholas1  Schumacher, Georg2 
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] Philipps Univ Marburg, Fachbereich Math & Informat, Hans Meerwein Str, D-35032 Marburg, Germany
关键词: Analytic GIT-quotients;    Polystable vector bundles on compact;    Kahler manifolds;    Hermite-Einstein connections;    Moduli spaces;   
DOI  :  10.1016/j.geomphys.2021.104237
来源: Elsevier
PDF
【 摘 要 】

Given a compact Kahler manifold, Geometric Invariant Theory is applied to construct analytic GIT-quotients that are local models for a classifying space of (poly)stable holomorphic vector bundles containing the coarse moduli space of stable bundles as an open subspace. For local models invariant generalized Weil-Petersson forms exist on the parameter spaces, which are restrictions of symplectic forms on smooth ambient spaces. If the underlying Kahler manifold is of Hodge type, then the Weil-Petersson form on the moduli space of stable vector bundles is known to be the Chern form of a certain determinant line bundle equipped with a Quillen metric. It gives rise to a holomorphic line bundle on the classifying GIT space together with a continuous hermitian metric. (C) 2021 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2021_104237.pdf 511KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:0次