期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:136
Geometry of special curves and surfaces in 3-space form
Article
Huang, Jie1  Chen, Liang1  Izumiya, Shyuichi2  Pei, Donghe1 
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
关键词: Bertrand curve;    Space form;    Mean curvature;    Geodesic;   
DOI  :  10.1016/j.geomphys.2018.09.010
来源: Elsevier
PDF
【 摘 要 】

We investigate differential geometry of Bertrand curves in 3-dimensional space form from a viewpoint of curves on surfaces. We define a special kind of surface, named geodesic surface, generated by geodesics in 3-dimensional space form. This kind of surface is nothing else, but a generalization of ruled surface in 3-dimensional Euclidean space. As results, we show that the Bertrand curve is related to the mean curvature of principal normal geodesic surface. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2018_09_010.pdf 396KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次