期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:75
Decompositions of quasigraded Lie algebras, non-skew-symmetric classical r-matrices and generalized Gaudin models
Article
Skrypnyk, T.1,2 
[1] Univ Milano Bicocca, I-20125 Milan, Italy
[2] Bogoliubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
关键词: Infinite-dimensional Lie algebras;    Classical r-matrices;    Gaudin-type systems;   
DOI  :  10.1016/j.geomphys.2013.09.001
来源: Elsevier
PDF
【 摘 要 】

We construct a special family of quasigraded Lie algebras that generalize loop algebras in different gradings and admit Adler-Kostant-Symes decomposition into a sum of two subalgebras. We analyze the special cases when the constructed Lie algebras admit additionally other types of Adler-Kostant-Symes decompositions. Based on the proposed Lie algebras and their decompositions we explicitly construct several new classes of non-skew-symmetric classical r-matrices r(u, v) with spectral parameters. Using them we obtain new types of the generalized quantum and classical Gaudin spin chains. (C) 2013 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2013_09_001.pdf 466KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次