JOURNAL OF GEOMETRY AND PHYSICS | 卷:52 |
Integrality of open instantons numbers | |
Article | |
Grünberg, DB | |
关键词: open instantons; enumerative geometry; Gromow-Witten invariants; integrality of BPS invariants; Wolstenholme and Wilson theorems; | |
DOI : 10.1016/j.geomphys.2004.03.004 | |
来源: Elsevier | |
【 摘 要 】
We prove the integrality of the open instanton numbers in two examples of counting holomorphic disks on local Calabi-Yau three-folds: the resolved conifold and the degenerate P-1 x P-1. Given the B-model superpotential, we extract by hand all Gromow-Witten invariants in the expansion of the A-model superpotential. The proof of their integrality relies on enticing congruences of binomial coefficients modulo powers of a prime. We also derive an expression for the factorial (p(k) - 1)! modulo powers of the prime p. We generalise two theorems of elementary number theory, by Wolstenholme and Wilson. (C) 2004 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_geomphys_2004_03_004.pdf | 125KB | download |