期刊论文详细信息
| JOURNAL OF GEOMETRY AND PHYSICS | 卷:62 |
| L2 dimensions of spaces of braid-invariant harmonic forms | |
| Article | |
| Daletskii, Alexei1  Kalyuzhnyi, Alexander2  | |
| [1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England | |
| [2] NAS, Inst Math, Kiev, Ukraine | |
| 关键词: Braid group; L-2-Betti number; Configuration space; | |
| DOI : 10.1016/j.geomphys.2011.10.023 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Let X be a Riemannian manifold endowed with a co-compact isometric action of an infinite discrete group. We consider L-2 spaces of harmonic vector-valued forms on the product manifold X-N that are invariant with respect to an action of the braid group B-N, and compute their von Neumann dimensions (the braided L-2-Betti numbers). (C) 2011 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_geomphys_2011_10_023.pdf | 289KB |
PDF