期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:62
L2 dimensions of spaces of braid-invariant harmonic forms
Article
Daletskii, Alexei1  Kalyuzhnyi, Alexander2 
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] NAS, Inst Math, Kiev, Ukraine
关键词: Braid group;    L-2-Betti number;    Configuration space;   
DOI  :  10.1016/j.geomphys.2011.10.023
来源: Elsevier
PDF
【 摘 要 】

Let X be a Riemannian manifold endowed with a co-compact isometric action of an infinite discrete group. We consider L-2 spaces of harmonic vector-valued forms on the product manifold X-N that are invariant with respect to an action of the braid group B-N, and compute their von Neumann dimensions (the braided L-2-Betti numbers). (C) 2011 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2011_10_023.pdf 289KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:2次