期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:63
Chern-Simons theory for the noncommutative three-torus C∞(TΘ3)
Article
Pfante, Oliver
关键词: Spectral triples;    Chern-Simons action;    Noncommutative three-torus;    Path integral;    Gauge transformation;   
DOI  :  10.1016/j.geomphys.2012.09.009
来源: Elsevier
PDF
【 摘 要 】

In a previous paper we defined a Chern-Simons action for noncommutative spaces, i.e. spectral triples. In the present paper we compute this action explicitly for the noncommutative three-torus C-infinity(T-Theta(3)), a (*)-algebra generated by three unitaries, and its spectral triple constructed by D. Essouabri, B. lochum, C. Levy, and A. Sitarz. In connection with this computation we calculate the first coefficient in the loop expansion series of the corresponding Feynman path integral with the Chern-Simons action as Lagrangian. The result does not depend on the deformation matrix Theta and is always equal to 0. (c) 2012 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2012_09_009.pdf 314KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次