期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:175
Orientations and bijections for toroidal maps with prescribed face-degrees and essential girth
Article
Fusy, Eric1  Leveque, Benjamin2 
[1] Ecole Polytech, LIX, UMR 7161, 1 Rue Honore dEstienne dOrves, F-91120 Palaiseau, France
[2] Univ Grenoble Alpes, UMR 5272, G SCOP, 46 Ave Felix Viallet, F-38031 Grenoble 1, France
关键词: Toroidal maps;    d-angulations;    Girth constraints;    Orientations;    Bijections;    Generating functions;   
DOI  :  10.1016/j.jcta.2020.105270
来源: Elsevier
PDF
【 摘 要 】

We present unified bijections for maps on the torus with control on the face-degrees and essential girth (girth of the periodic planar representation). A first step is to show that for d >= 3 every toroidal d-angulation of essential girth d can be endowed with a certain 'canonical' orientation (formulated as a weight-assignment on the half-edges). Using an adaptation of a construction by Bernardi and Chapuy, we can then derive a bijection between face-rooted toroidal d-angulations of essential girth d (with the condition that, apart from the root-face contour, no other closed walk of length d encloses the root-face) and a family of decorated unicellular maps. The orientations and bijections can then be generalized, for any d >= 1, to toroidal face-rooted maps of essential girth d with a root-face of degree d (and with the same root-face contour condition as for d-angulations), and they take a simpler form in the bipartite case, as a parity specialization. On the enumerative side we obtain explicit algebraic expressions for the generating functions of rooted essentially simple triangulations and bipartite quadrangulations on the torus. Our bijective constructions can be considered as toroidal counterparts of those obtained by Bernardi and the first author in the planar case, and they also build on ideas introduced by Despre, Goncalves and the second author for essentially simple triangulations, of imposing a balancedness condition on the orientations in genus 1. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2020_105270.pdf 1296KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次