期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A | 卷:120 |
Permutations all of whose patterns of a given length are distinct | |
Article | |
Hegarty, Peter1,2  | |
[1] Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden | |
[2] Univ Gothenburg, Dept Math Sci, Gothenburg, Sweden | |
关键词: Permutation pattern; k-Separator; Tilted checkerboard permutation; | |
DOI : 10.1016/j.jcta.2013.06.006 | |
来源: Elsevier | |
【 摘 要 】
For each integer k >= 2, let F(k) denote the largest n for which there exists a permutation sigma is an element of S-n all of whose patterns of length k are distinct. We prove that F (k) = k + left perpendicular root 2k - 3right perpendicular + epsilon(k), where epsilon(k) is an element of {-1, 0} for every k. We conjecture an even more precise result, based on data for small values of k. (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcta_2013_06_006.pdf | 221KB | download |