期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:143
Smooth monomial Togliatti systems of cubics
Article
Michalek, Mateusz1,2  Miro-Roig, Rosa M.1 
[1] Fac Matemat, Dept Algebra & Geometria, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
[2] Polish Acad Sci, Math Inst, PL-00956 Warsaw, Poland
关键词: Osculating space;    Weak Lefschetz property;    Laplace equations;    Toric threefold;   
DOI  :  10.1016/j.jcta.2016.05.004
来源: Elsevier
PDF
【 摘 要 】

The goal of this paper is to prove the conjecture stated in [6], extending and correcting a previous conjecture of Ilardi [5], and classify smooth minimal monomial Togliatti systems of cubics in any dimension. More precisely, we classify all minimal monomial artinian ideals I subset of k[x(0), ... ,x(n)] generated by cubics, failing the weak Lefschetz property and whose apolar cubic system I-1 defines a smooth toric variety. Equivalently, we classify all minimal monomial artinian ideals I subset of k[x(0), ... , x(n)] generated by cubics whose apolar cubic system I-1 defines a smooth toric variety satisfying at least a Laplace equation of order 2. Our methods rely on combinatorial properties of monomial ideals. (C) 2016 Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2016_05_004.pdf 464KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:1次