期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:119
Linear extension of the Erdos-Heilbronn conjecture
Article
Sun, Zhi-Wei1  Zhao, Li-Lu2 
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词: Combinatorial Nullstellensatz;    Erdos-Heilbronn conjecture;    Linear extension;    Value sets of polynomials over a field;   
DOI  :  10.1016/j.jcta.2011.09.003
来源: Elsevier
PDF
【 摘 要 】

The famous Erclos-Heilbronn conjecture plays an important role in the development of additive combinatorial number theory. In 2007 Z.W. Sun made the following further conjecture (which is the linear extension of the Erclos-Heilbronn conjecture): For any finite subset A of a field F and nonzero elements a(1), ..., a(n) of F, we have [{a(1)x(1) + ... + a(n)x(n): x(1,) (...,)x(n) epsilon A, and xi not equal x(j) if i not equal j}] >= minip(F)- 8, n(lAl - n) + 1}, where the additive order p(F) of the multiplicative identity of F is different from n + 1, and delta epsilon {0, 1} takes the value 1 if and only if n = 2 and a(1) + a(2) = 0. In this paper we prove this conjecture of Sun when p(F) >= n(3n- 5)/2. We also obtain a sharp lower bound for the cardinality of the restricted sumset {x(1) + ... + X(n): X(1) epsilon A(1), ... X(n) epsilon A(n), and P(x(1), ...,x(n)) not equal 0 0}, where A(1) ,..., A(n) are finite subsets of a field F and P(x(1) ,..., x(n)) is a general polynomial over F. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2011_09_003.pdf 239KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次