JOURNAL OF COMBINATORIAL THEORY SERIES A | 卷:137 |
Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions | |
Article | |
Bessenrodt, Christine1  Tewari, Vasu2  van Willigenburg, Stephanie2  | |
[1] Leibniz Univ Hannover, Inst Algebra Zahlentheorie & Diskrete Math, D-30167 Hannover, Germany | |
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada | |
关键词: Composition; Littlewood-Richardson rule; Quasisymmetric function; Schur function; Skew Schur function; Symmetric function; Tableaux; | |
DOI : 10.1016/j.jcta.2015.08.005 | |
来源: Elsevier | |
【 摘 要 】
The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood-Richardson rule as a special case. We then apply our rules to combinatorially classify symmetric skew quasisymmetric Schur functions. This answers affirmatively a conjecture of Bessenrodt, Luoto and van Willigenburg. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcta_2015_08_005.pdf | 498KB | download |