期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:118
Erdos-Ko-Rado theorems for simplicial complexes
Article
Woodroofe, Russ
关键词: Erdos-Ko-Rado;    Algebraic shifting;    Cohen-Macaulay;    Shellable;    Depth;    Independence complex;   
DOI  :  10.1016/j.jcta.2010.11.022
来源: Elsevier
PDF
【 摘 要 】

A recent framework for generalizing the Erdos-Ko-Rado theorem, due to Holroyd. Spencer, and Talbot, defines the Erdos-Ko-Rado property for a graph in terms of the graph's independent sets. Since the family of all independent sets of a graph forms a simplicial complex, it is natural to further generalize the Erdos-Ko-Rado property to an arbitrary simplicial complex. An advantage of working in simplicial complexes is the availability of algebraic shifting, a powerful shifting (compression) technique, which we use to verify a conjecture of Holroyd and Talbot in the case of sequentially Cohen-Macaulay near-cones. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2010_11_022.pdf 165KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次