期刊论文详细信息
| JOURNAL OF COMBINATORIAL THEORY SERIES A | 卷:125 |
| Proof of Blum's conjecture on hexagonal dungeons | |
| Article | |
| Ciucu, Mihai1  Lai, Tri1  | |
| [1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA | |
| 关键词: Tilings; Perfect matchings; Dual graph; Graphical condensation; Aztec dungeons; Hexagonal dungeons; | |
| DOI : 10.1016/j.jcta.2014.03.008 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Matt Blum conjectured that the number of tilings of the hexagonal dungeon of sides a, 2a, b, a, 2a, b (where b >= 2a) is 13(2a2)14[a(2)/2] (Propp, 1999 [4]). In this paper we present a proof for this conjecture using Kuo's Graphical Condensation Theorem (Kuo, 2004 [2]). (C) 2014 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jcta_2014_03_008.pdf | 573KB |
PDF