期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:184
Iterated differences sets, Diophantine approximations and applications
Article
Bergelson, Vitaly1  Zelada, Rigoberto1 
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词: Ramsey theory;    Diophantine approximations;    Ergodic theory;    Ultrafilters;   
DOI  :  10.1016/j.jcta.2021.105520
来源: Elsevier
PDF
【 摘 要 】

Let v be an odd real polynomial (i.e. a polynomial of the form Sigma(l)(j=1) a(j)x(2j-1)). We utilize sets of iterated differences to establish new results about sets of the form R(v, epsilon) = {n is an element of N vertical bar parallel to v(n) parallel to < epsilon} where parallel to.parallel to denotes the distance to the closest integer. We then apply the new Diophantineresults to obtain applications to ergodic theory and combinatorics. In particular, we obtain a new characterization of weakly mixing systems as well as a new variant of Furstenberg-Sarkozy theorem. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2021_105520.pdf 694KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次