期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A | 卷:115 |
On the number of pseudo-triangulations of certain point sets | |
Article | |
Aichholzer, Oswin1  Orden, David2  Santos, Francisco3  Speckmann, Bettina4  | |
[1] Graz Univ Technol, Inst Software Technol, Graz, Austria | |
[2] Univ Alcala de Henares, Dept Matemat, Alcala De Henares, Spain | |
[3] Univ Cantabria, Dept Stat & Computat Math, Santander, Spain | |
[4] Tech Univ Eindhoven, Dept Math & Comp Sci, Eindhoven, Netherlands | |
关键词: pseudo-triangulations; triangulations; double-circle; double-chain; counting; | |
DOI : 10.1016/j.jcta.2007.06.002 | |
来源: Elsevier | |
【 摘 要 】
We pose a monotonicity conjecture on the number of pseudo-triangulations of any planar point set, and check it on two prominent families of point sets, namely the so-called double circle and double chain. The latter has asymptotically 12(n)n(Theta)(1) pointed pseudo-triangulations, which lies significantly above the maximum number of triangulations in a planar point set known so far. (c) 2007 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcta_2007_06_002.pdf | 540KB | download |