期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:182
Harmonic differential forms for pseudo-reflection groups I. Semi-invariants
Article
关键词: Coinvariant algebras;    Pseudo-reflection groups;    Harmonics;    Semi-invariants;    Invariant theory;   
DOI  :  10.1016/j.jcta.2021.105474
来源: Elsevier
PDF
【 摘 要 】

We provide a type-independent construction of an explicit basis for the semi-invariant harmonic differential forms of an arbitrary pseudo-reflection group in characteristic zero. Equivalently, we completely describe the structure of the chi-isotypic components of the corresponding super coinvariant algebras in one commuting and one anti-commuting set of variables, for all linear characters chi. In type A, we verify a specialization of a conjecture of Zabrocki [37] which provides a representation-theoretic model for the Delta conjecture of Haglund-Remmel-Wilson [10]. Our top-down approach uses the methods of Cartan's exterior calculus and is in some sense dual to related work of Solomon [29], Orlik-Solomon [21], and Shepler [27,28] describing (semi-)invariant differential forms. (C) 2021 The Author(s). Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2021_105474.pdf 527KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次