期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:102
Zero-patterns of polynomials and Newton polytopes
Article
Lauder, AGB
关键词: multivariate polynomial;    zero-pattern;    Newton polytope;    hypersurface;    sign-pattern;   
DOI  :  10.1016/S0097-3165(03)00007-4
来源: Elsevier
PDF
【 摘 要 】

We present an upper bound on the number of regions into which affine space or the torus over a field may be partitioned by the vanishing and non-vanishing of a finite collection of multivariate polynomials. The bound is related to the number of lattice points in the Newton polytopes of the polynomials, and is optimal to within a factor depending only on the dimension (assuming suitable inequalities hold amongst the relevant parameters). This refines previous work by different authors. (C) 2003 Elsevier Science (USA). All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_S0097-3165(03)00007-4.pdf 138KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次