期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:116
Punctured plane partitions and the q-deformed Knizhnik-Zamolodchikov and Hirota equations
Article
de Gier, Jan1  Pyatov, Pavel2,3  Zinn-Justin, Paul4,5,6 
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
[2] Max Planck Inst Math, D-53111 Bonn, Germany
[3] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
[4] Univ Paris Sud, CNRS, UMR 8626, LPTMS, F-91405 Orsay, France
[5] Univ Paris 06, CNRS, UMR 7589, LPTHE, F-75252 Paris, France
[6] Univ Paris 07, F-75252 Paris, France
关键词: Hirota equation;    qKZ equation;    Plane partitions;    Alternating sign matrices;   
DOI  :  10.1016/j.jcta.2008.11.008
来源: Elsevier
PDF
【 摘 要 】

We consider partial sum rules for the homogeneous limit of the solution of the q-deformed Knizhnik-Zamolodchikov equation with reflecting boundaries in the Dyck path representation of the Temperley-Lieb algebra. We show that these partial sums arise in a solution of the discrete Hirota equation, and prove that they are the generating functions of tau(2)-weighted punctured cyclically symmetric transpose complement plane partitions where tau = -(q + q(-1)). in the cases of no or minimal punctures, we prove that these generating functions coincide with tau(2)-enumerations of vertically symmetric alternating sign matrices and modifications thereof. (C) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2008_11_008.pdf 792KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:0次