期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A | 卷:174 |
Catalan intervals and uniquely sorted permutations | |
Article | |
Defant, Colin1  | |
[1] Princeton Univ, Fine Hall,304 Washington Rd, Princeton, NJ 08544 USA | |
关键词: Uniquely sorted permutation; Poset interval; Dyck path; Stanley lattice; Tamari lattice; Noncrossing partition lattice; Pallo comb poset; Stack-sorting; | |
DOI : 10.1016/j.jcta.2020.105250 | |
来源: Elsevier | |
【 摘 要 】
For each positive integer k, we consider five well-studied posets defined on the set of Dyck paths of semilength k. We prove that uniquely sorted permutations avoiding various patterns are equinumerous with intervals in these posets. While most of our proofs are bijective, some use generating trees and generating functions. We end with several conjectures. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcta_2020_105250.pdf | 1014KB | download |