期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:174
Catalan intervals and uniquely sorted permutations
Article
Defant, Colin1 
[1] Princeton Univ, Fine Hall,304 Washington Rd, Princeton, NJ 08544 USA
关键词: Uniquely sorted permutation;    Poset interval;    Dyck path;    Stanley lattice;    Tamari lattice;    Noncrossing partition lattice;    Pallo comb poset;    Stack-sorting;   
DOI  :  10.1016/j.jcta.2020.105250
来源: Elsevier
PDF
【 摘 要 】

For each positive integer k, we consider five well-studied posets defined on the set of Dyck paths of semilength k. We prove that uniquely sorted permutations avoiding various patterns are equinumerous with intervals in these posets. While most of our proofs are bijective, some use generating trees and generating functions. We end with several conjectures. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2020_105250.pdf 1014KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次