期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:138
Equiangular lines in Euclidean spaces
Article
Greaves, Gary1  Koolen, Jacobus H.2  Munemasa, Akihiro1  Szoellosi, Ferenc1 
[1] Tohoku Univ, Grad Sch Informat Sci, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, Japan
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
关键词: Equiangular lines;    Seidel matrix;    Switching;    Two-graph;   
DOI  :  10.1016/j.jcta.2015.09.008
来源: Elsevier
PDF
【 摘 要 】

We obtain several new results contributing to the theory of real equiangular line systems Among other things, we present a new general lower bound on the maximum number of equiangular lines in d dimensional Euclidean space; we describe the two-graphs on 12 vertices; and we investigate Seidel matrices with exactly three distinct eigenvalues. As a result, we improve on two long-standing upper bounds regarding the maximum number of equiangular lines in dimensions d = 14 and d = 16. Additionally, we prove the nonexistence of certain regular graphs with four eigenvalues, and correct some tables from the literature. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcta_2015_09_008.pdf 562KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:2次