| JOURNAL OF COMBINATORIAL THEORY SERIES A | 卷:138 |
| Equiangular lines in Euclidean spaces | |
| Article | |
| Greaves, Gary1  Koolen, Jacobus H.2  Munemasa, Akihiro1  Szoellosi, Ferenc1  | |
| [1] Tohoku Univ, Grad Sch Informat Sci, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, Japan | |
| [2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China | |
| 关键词: Equiangular lines; Seidel matrix; Switching; Two-graph; | |
| DOI : 10.1016/j.jcta.2015.09.008 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We obtain several new results contributing to the theory of real equiangular line systems Among other things, we present a new general lower bound on the maximum number of equiangular lines in d dimensional Euclidean space; we describe the two-graphs on 12 vertices; and we investigate Seidel matrices with exactly three distinct eigenvalues. As a result, we improve on two long-standing upper bounds regarding the maximum number of equiangular lines in dimensions d = 14 and d = 16. Additionally, we prove the nonexistence of certain regular graphs with four eigenvalues, and correct some tables from the literature. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jcta_2015_09_008.pdf | 562KB |
PDF