期刊论文详细信息
JOURNAL OF COLLOID AND INTERFACE SCIENCE 卷:259
Investigation of a colloidal damper
Article
Suciu, CV ; Iwatsubo, T ; Deki, S
关键词: colloid;    damping;    nanotechnology;    hydrophobic porous silica gel;    ink-bottle theory;    contact angle hysteresis;    creeping flow;    slip;   
DOI  :  10.1016/S0021-9797(02)00076-0
来源: Elsevier
PDF
【 摘 要 】

A novel application of nanotechnology in the field of mechanical engineering, called colloidal damper (CD), is investigated. This device is complementary to the hydraulic damper (HD), having a cylinder-piston construction. Particularly for CD, the hydraulic oil is replaced by a colloidal suspension, which consists of a mesoporous matrix and a lyophobic fluid. In this work. the porous matrix is from silica gel modified by linear chains of n-alkylchlorosilanes and water is considered as an associated working fluid. A design solution from a practical point of view of the CD test rig and the measuring technique of the hysteresis are described. A brief review of the water physical properties relative to the CD concept is presented. Influence of the bonding density, length of the grafted molecule, pore diameter, and particle diameter on the CD hysteresis is investigated for distinctive types and mixtures of silica gels. Temperature variation during functioning is recorded and the CD cycle is interpreted from a thermodynamic standpoint. Variation of the CD dissipated energy and efficiency with pressure, water quantity, and relaxation time is illustrated. Experimental results are justified by the analysis of the water flow into the porous matrix, CD thermodynamics, and the mechanism of the energy dissipation. Our findings agree with the previously published data. (C) 2003 Elsevier Science (USA). All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_S0021-9797(02)00076-0.pdf 755KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:0次