期刊论文详细信息
| JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:263 |
| Well-posedness of the limiting equation of a noisy consensus model in opinion dynamics | |
| Article | |
| Chazelle, Bernard1  Jiu, Quansen3  Li, Qianxiao2  Wang, Chu2,4  | |
| [1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA | |
| [2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08540 USA | |
| [3] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China | |
| [4] Nokia Bell Labs, 600-700 Mt Ave, Murray Hill, NJ 07974 USA | |
| 关键词: Hegselmann-Krause model; Nonlinear Fokker-Planck equation; Well-posedness; Global stability; | |
| DOI : 10.1016/j.jde.2017.02.036 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
This paper establishes the global well-posedness of the nonlinear Fokker-Planck equation for a noisy version of the Hegselmann-Krause model. The equation captures the mean-field behavior of a classic multi agent system for opinion dyrignics. We prove the global existence, uniqueness, nonnegativity and regularity of the weak solution. We also exhibit a global stability condition, which delineates a forbidden region for consensus formation. This is the first nonlinear stability result derived for the Hegselmann-Krause model. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jde_2017_02_036.pdf | 1257KB |
PDF