期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:263
Well-posedness of the limiting equation of a noisy consensus model in opinion dynamics
Article
Chazelle, Bernard1  Jiu, Quansen3  Li, Qianxiao2  Wang, Chu2,4 
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08540 USA
[3] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[4] Nokia Bell Labs, 600-700 Mt Ave, Murray Hill, NJ 07974 USA
关键词: Hegselmann-Krause model;    Nonlinear Fokker-Planck equation;    Well-posedness;    Global stability;   
DOI  :  10.1016/j.jde.2017.02.036
来源: Elsevier
PDF
【 摘 要 】

This paper establishes the global well-posedness of the nonlinear Fokker-Planck equation for a noisy version of the Hegselmann-Krause model. The equation captures the mean-field behavior of a classic multi agent system for opinion dyrignics. We prove the global existence, uniqueness, nonnegativity and regularity of the weak solution. We also exhibit a global stability condition, which delineates a forbidden region for consensus formation. This is the first nonlinear stability result derived for the Hegselmann-Krause model. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2017_02_036.pdf 1257KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:0次