期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:251
Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors
Article
Huang, Feimin1  Mei, Ming2,3  Wang, Yong1  Yu, Huimin4 
[1] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Champlain Coll St Lambert, Dept Math, Quebec City, PQ J4P 3P2, Canada
[3] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[4] Shandong Normal Univ, Dept Math, Jinan 250014, Peoples R China
关键词: Euler-Poisson equations;    Unipolar hydrodynamic model of semiconductor;    Nonlinear damping;    Planar stationary waves;    Asymptotic convergence;    Exponential decay rates;   
DOI  :  10.1016/j.jde.2011.04.007
来源: Elsevier
PDF
【 摘 要 】

In this study, we consider the high dimensional unipolar hydrodynamic model for semiconductors in the form of Euler-Poisson equations. Based on the results that we have obtained in the first part (Huang, et al., 2011 [16]) for the 1-D case, we can further show the stability of planar stationary waves in multi-dimensional case. Utilizing the energy method, we obtain the global existence of the solutions of high dimensional Euler-Poisson equations for the unipolar hydrodynamic model, and prove that the solutions converge to the planar stationary waves time-exponentially. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2011_04_007.pdf 248KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:1次