期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:254 |
Multiplicity of self-similar solutions for a critical equation | |
Article | |
Furtado, Marcelo F.1  da Silva, Joao Pablo P.2  Xavier, Magda S.3  | |
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil | |
[2] Fed Univ Para, Dept Matemat, BR-66075110 Belem, PA, Brazil | |
[3] Univ Fed Espirito Santo, Dept Matemat, BR-29075910 Vitoria, ES, Brazil | |
关键词: Critical problems; Symmetric functionals; Self-similar solutions; | |
DOI : 10.1016/j.jde.2013.01.007 | |
来源: Elsevier | |
【 摘 要 】
We consider the equation -Delta u-1/2(x.del u) = f(u) + beta vertical bar u vertical bar(2*-2)u, x is an element of R-N, with beta > 0, f superlinear and 2* := 2N/(N-2) for N >= 3. We prove that, for each k is an element of N, there exists beta* = beta* (k) > 0 such that the equation has at least k pairs of solutions provided beta is an element of (0, beta*). In the proof we use variational methods for the (even) functional associated to the equation. (C) 2013 Published by Elsevier Inc.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jde_2013_01_007.pdf | 180KB | download |