期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:261
Viscous singular shock profiles for a system of conservation laws modeling two-phase flow
Article
Hsu, Ting-Hao1 
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词: Conservation laws;    Singular shocks;    Viscous profiles;    Dafermos regularization;    Geometric Singular Perturbation Theory;   
DOI  :  10.1016/j.jde.2016.04.034
来源: Elsevier
PDF
【 摘 要 】

This paper is concerned with singular shocks for a system of conservation laws via the Dafermos regularization u(t) + f (u)(x) = epsilon tu(xx). For a system modeling incompressible two-phase fluid flow, the existence of viscous profiles is proved using Geometric Singular Perturbation Theory. The weak convergence and the growth rate of the viscous solution are also derived; the weak limit is the sum of a piecewise constant function and a delta-measure supported on a shock line, and the maximum value of the viscous solution is of order exp (1/epsilon). (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2016_04_034.pdf 1872KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次