期刊论文详细信息
| JOURNAL OF DIFFERENTIAL EQUATIONS | 卷:265 |
| Monotone dynamical systems with dense periodic points | |
| Article | |
| Lemmens, Bas1  van Gaans, Onno2  van Imhoff, Hent2  | |
| [1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NX, Kent, England | |
| [2] Leiden Univ, Math Inst, POB 9512, NL-2300 RA Leiden, Netherlands | |
| 关键词: Chaos; Dense periodic points; Monotone dynamical systems; | |
| DOI : 10.1016/j.jde.2018.07.012 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In this paper we prove a recent conjecture by M. Hirsch, which says that if (f, Omega) is a discrete time monotone dynamical system, with f: Omega -> Omega a homeomorphism on an open connected subset of a finite dimensional vector space, and the periodic points of f are dense in Omega, then f is periodic. (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jde_2018_07_012.pdf | 213KB |
PDF