期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:246
Hyperbolic mean curvature flow
Article
He, Chun-Lei2  Kong, De-Xing1  Liu, Kefeng3 
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词: Hyperbolic mean curvature flow;    Extremal surface;    Short-time existence;    Nonlinear stability;   
DOI  :  10.1016/j.jde.2008.06.026
来源: Elsevier
PDF
【 摘 要 】

In this paper we introduce the hyperbolic mean curvature flow and prove that the corresponding system of partial differential equations is strictly hyperbolic, and based on this, we show that this flow admits a unique short-time smooth solution and possesses the nonlinear stability defined on the Euclidean space with dimension larger than 4. We derive nonlinear wave equations satisfied by some geometric quantities related to the hyperbolic mean curvature flow. Moreover, we also discuss the relation between the equations for hyperbolic mean curvature flow and the equations for extremal surfaces in the Minkowski space-time. (c) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2008_06_026.pdf 180KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次