期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:256
On the radius of spatial analyticity for semilinear symmetric hyperbolic systems
Article
Cappiello, Marco1  D'Ancona, Piero2  Nicola, Fabio3 
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[3] Politecn Torino, Dipartimento Sci Matemat, I-10129 Turin, Italy
关键词: Hyperbolic systems;    Holomorphic extension;    Radius of analyticity;   
DOI  :  10.1016/j.jde.2014.01.020
来源: Elsevier
PDF
【 摘 要 】

We study the problem of propagation of analytic regularity for semi-linear symmetric hyperbolic systems. We adopt a global perspective and we prove that if the initial datum extends to a holomorphic function in a strip of radius (= width) epsilon(0), the same happens for the solution u(t, .) for a certain radius epsilon(t), as long as the solution exists. Our focus is on precise lower bounds on the spatial radius of analyticity epsilon(t) as t grows. We also get similar results for the Schrodinger equation with a real-analytic electromagnetic potential. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2014_01_020.pdf 269KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次