期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:268
Asymptotics for the Sasa-Satsuma equation in terms of a modified Painleve II transcendent
Article
Huang, Lin1  Lenells, Jonatan2 
[1] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Peoples R China
[2] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词: Sasa-Satsuma equation;    Riemann-Hilbert problem;    Asymptotics;    Initial value problem;   
DOI  :  10.1016/j.jde.2019.11.062
来源: Elsevier
PDF
【 摘 要 】

We consider the initial-value problem for the Sasa-Satsuma equation on the line with decaying initial data. Using a Riemann-Hilbert formulation and steepest descent arguments, we compute the long-time asymptotics of the solution in the sector vertical bar x vertical bar <= Mt(1/3) constant. It turns out that the asymptotics can be expressed in terms of the solution of a modified Painleve II equation. Whereas the standard Painleve II equation is related to a 2 x 2 matrix Riemann-Hilbert problem, this modified Painleve II equation is related to a 3 x 3 matrix Riemann-Hilbert problem. (C) 2019 The Authors. Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2019_11_062.pdf 1071KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次